Friday, 3 November 2017

Regression Vs Gleitenden Durchschnitt


Einfache Vs. Exponential Moving Averages Moving-Mittelwerte sind mehr als das Studium einer Folge von Zahlen in aufeinanderfolgender Reihenfolge. Frühe Praktiker der Zeitreihenanalyse beschäftigten sich tatsächlich eher mit einzelnen Zeitreihenzahlen als mit der Interpolation dieser Daten. Interpolation. In Form von Wahrscheinlichkeitstheorien und - analyse, kam viel später, als Muster entwickelt wurden und Korrelationen entdeckt. Einmal verstanden, wurden verschiedene geformte Kurven und Linien entlang der Zeitreihen gezogen, um zu prognostizieren, wo die Datenpunkte gehen könnten. Diese werden nun als grundlegende Methoden, die derzeit von technischen Analyse-Händler verwendet. Charting-Analyse kann bis ins 18. Jahrhundert Japan zurückverfolgt werden, aber wie und wann bewegte Durchschnitte wurden zuerst auf Marktpreise angewendet bleibt ein Geheimnis. Es wird allgemein verstanden, dass einfache Bewegungsdurchschnitte (SMA) lange vor exponentiellen Bewegungsdurchschnitten (EMA) verwendet wurden, da EMAs auf SMA-Gerüsten aufgebaut sind und das SMA-Kontinuum für Plotter und Verfolgungszwecke leichter verstanden wurde. (Möchten Sie ein wenig Hintergrund lesen Check out Moving Averages: Was sind sie) Simple Moving Average (SMA) Einfache gleitende Durchschnitte wurden die bevorzugte Methode für die Verfolgung Marktpreise, weil sie schnell zu berechnen und leicht zu verstehen sind. Frühe Marktpraktiker arbeiteten ohne den Gebrauch der ausgefeilten Diagrammmetriken, die heute benutzt werden, also verließen sie hauptsächlich auf Marktpreisen als ihre alleinigen Führer. Sie berechneten die Marktpreise von Hand, und graphed diese Preise, um Trends und Marktrichtung zu bezeichnen. Dieser Prozeß war sehr langwierig, erweist sich aber mit der Bestätigung weiterer Untersuchungen als recht rentabel. Um einen 10-tägigen einfachen gleitenden Durchschnitt zu berechnen, addieren Sie einfach die Schlusskurse der letzten 10 Tage und dividieren durch 10. Der gleitende 20-Tage-Durchschnitt wird berechnet, indem die Schlusskurse über einen Zeitraum von 20 Tagen addiert und durch 20 dividiert werden bald. Diese Formel ist nicht nur auf Schlusskurse basiert, sondern das Produkt ist ein Mittel der Preise - eine Teilmenge. Bewegungsdurchschnitte werden als bewegt bezeichnet, da sich die in der Berechnung verwendete Gruppe von Preisen gemäß dem Punkt auf dem Diagramm bewegt. Das bedeutet, dass alte Zeiten zugunsten neuer Schlusskurstage fallengelassen werden, so dass immer eine neue Berechnung erforderlich ist, die dem Zeitrahmen des durchschnittlichen Beschäftigten entspricht. So wird ein 10-Tage-Durchschnitt neu berechnet, indem der neue Tag hinzugefügt und der 10. Tag fallen gelassen wird, und der neunte Tag wird am zweiten Tag fallen gelassen. Exponential Moving Average (EMA) Exponential Moving Average (EMA) Der exponentielle gleitende Durchschnitt wurde verfeinert und seit den sechziger Jahren aufgrund früherer Experimente mit dem Computer weiter verbreitet. Die neue EMA würde sich mehr auf die jüngsten Preise konzentrieren als auf eine lange Reihe von Datenpunkten, da der einfache gleitende Durchschnitt erforderlich ist. Aktuelle EMA ((Preis (aktuelle) - vorherige EMA)) X Multiplikator) vorherige EMA. Der wichtigste Faktor ist die Glättungskonstante, die 2 (1N) mit N die Anzahl der Tage. Eine 10-Tage-EMA 2 (101) 18,8 Dies bedeutet, dass ein 10-Perioden-EMA den jüngsten Preis 18,8, ein 20-Tage EMA 9,52 und 50-Tage EMA 3,92 Gewicht auf den letzten Tag gewichtet. Die EMA arbeitet, indem sie die Differenz zwischen dem Preis der gegenwärtigen Perioden und der vorherigen EMA gewichtet und das Ergebnis der vorherigen EMA hinzugefügt hat. Je kürzer die Periode, desto mehr Gewicht auf den jüngsten Preis angewendet. Anpassungslinien Nach diesen Berechnungen sind Punkte aufgetragen und zeigen eine passende Linie. Anpassungen über oder unter dem Marktpreis bedeuten, dass alle gleitenden Durchschnitte nacheilende Indikatoren sind. Und werden hauptsächlich für folgende Trends verwendet. Sie funktionieren nicht gut mit Reichweitenmärkten und Perioden der Überlastung, weil die passenden Linien nicht einen Trend aufgrund eines Mangels an offensichtlich höheren Höhen oder niedrigeren Tiefs bezeichnen. Plus, passende Linien neigen dazu, konstant bleiben, ohne Andeutung der Richtung. Eine aufsteigende Montagelinie unterhalb des Marktes bedeutet eine lange, während eine sinkende Montagelinie oberhalb des Marktes ein kurzes bedeutet. (Für eine vollständige Anleitung, lesen Sie unsere Moving Average Tutorial.) Der Zweck der Verwendung eines einfachen gleitenden Durchschnitt ist es, zu erkennen und zu messen Trends durch Glättung der Daten mit Hilfe von mehreren Gruppen von Preisen. Ein Trend wird entdeckt und in eine Prognose hochgerechnet. Es wird davon ausgegangen, dass sich die bisherigen Trendbewegungen fortsetzen werden. Für den einfachen gleitenden Durchschnitt kann ein langfristiger Trend gefunden und gefolgt werden viel einfacher als eine EMA, mit der vernünftigen Annahme, dass die Anpassungslinie stärker als eine EMA-Linie aufgrund der längeren Fokussierung auf Mittelpreise halten wird. Eine EMA wird verwendet, um kürzere Trendbewegungen zu erfassen, aufgrund der Fokussierung auf die jüngsten Preise. Durch dieses Verfahren soll eine EMA jede Verzögerung in dem einfachen gleitenden Durchschnitt reduzieren, so dass die Anpassungslinie die Preise näher umschließt als ein einfacher gleitender Durchschnitt. Das Problem mit der EMA ist dies: Seine anfällig für Preisunterbrechungen, vor allem auf schnellen Märkten und Zeiten der Volatilität. Die EMA funktioniert gut, bis die Preise die passende Linie brechen. Bei höheren Volatilitätsmärkten könnte man erwägen, die Länge des gleitenden Durchschnittsbegriffs zu vergrößern. Man kann sogar von einer EMA zu einer SMA wechseln, da die SMA die Daten viel besser macht als eine EMA aufgrund ihres Fokus auf längerfristige Mittel. Trendindikatoren Als Nachlaufindikatoren dienen die gleitenden Mittelwerte als Unterstützungs - und Widerstandslinien. Wenn die Preise unter einer 10-tägigen Anpaßlinie in einem Aufwärtstrend brechen, sind die Chancen gut, dass der Aufwärtstrend schwächer werden kann, oder zumindest kann sich der Markt konsolidieren. Wenn die Preise über einen 10 Tage gleitenden Durchschnitt in einem Abwärtstrend brechen. Kann der Trend abnehmen oder konsolidieren. Verwenden Sie in diesen Fällen einen 10- und 20-Tage gleitenden Durchschnitt zusammen, und warten Sie, bis die 10-Tage-Linie über oder unter der 20-Tage-Linie zu überqueren. Dies bestimmt die nächste kurzfristige Richtung für die Preise. Für längere Zeiträume, beobachten Sie die 100- und 200-Tage gleitende Mittelwerte für längerfristige Richtung. Wenn man beispielsweise den 100- und 200-Tage-Gleitdurchschnitt verwendet, wenn der 100-Tage-Gleitende Durchschnitt unter dem 200-Tage-Durchschnitt überschreitet, nennt man ihn das Todeskreuz. Und ist sehr bärisch für die Preise. Ein 100-Tage-Gleitender Durchschnitt, der über einen 200-Tage gleitenden Durchschnitt kreuzt, wird das goldene Kreuz genannt. Und ist sehr bullisch für die Preise. Es spielt keine Rolle, wenn ein SMA oder eine EMA verwendet wird, weil beide Trend-folgende Indikatoren sind. Seine nur in der kurzfristigen, dass die SMA hat geringfügige Abweichungen von seinem Pendant, die EMA. Fazit Die gleitenden Durchschnitte sind die Grundlage der Diagramm - und Zeitreihenanalyse. Einfache gleitende Durchschnitte und die komplexeren exponentiellen gleitenden Durchschnitte helfen, den Trend zu visualisieren, indem sie Preisbewegungen ausgleichen. Technische Analyse wird manchmal als Kunst und nicht als Wissenschaft bezeichnet, die beide Jahre in Anspruch nehmen. (Weitere Informationen finden Sie in unserem Technical Analysis Tutorial.) Linear Regression Indicator Der Linear Regression Indicator dient zur Trendidentifizierung und Trendentwicklung analog zu gleitenden Durchschnitten. Das Kennzeichen darf nicht mit linearen Regressionslinien verwechselt werden, bei denen es sich um gerade Linien handelt, die an eine Reihe von Datenpunkten angepasst sind. Der lineare Regressionsindikator zeichnet die Endpunkte einer ganzen Reihe linearer Regressionslinien auf, die an aufeinanderfolgenden Tagen gezeichnet wurden. Der Vorteil der linearen Regression Indicator über einen normalen gleitenden Durchschnitt ist, dass es weniger Verzögerung als der gleitende Durchschnitt hat, reagiert schneller auf Richtungsänderungen. Der Nachteil ist, dass es anfälliger für whipsaws ist. Der Linear Regression Indicator ist nur für den Handel mit starken Trends geeignet. Signale werden ähnlich wie gleitende Mittelwerte genommen. Verwenden Sie die Richtung des Linear Regression Indicators, um Trades mit einem längerfristigen Indikator als Filter einzugeben und zu beenden. Gehen Sie lange, wenn die Linear Regression Indicator auftaucht oder beenden Sie einen kurzen Handel. Gehen Sie kurz (oder verlassen einen langen Handel), wenn die Linear Regression Indicator ausgeschaltet wird. Eine Variation des obigen ist es, Trades einzugeben, wenn der Kurs die Linear Regression Indicator überschreitet, aber trotzdem beenden, wenn die Linear Regression Indicator ausgeschaltet wird. Maus über Diagrammbeschriftungen, um Handelssignale anzuzeigen. Gehen Sie lange L, wenn der Kurs über dem 100-Tage-Linear-Regressions-Indikator kreuzt, während der 300-Tage-Anstieg ansteigt. Exit X, wenn die 100-tägige Linear Regression Indicator ausfällt Gehen Sie bei L erneut, wenn der Kurs über dem 100-Tage Linear Regression Indicator Exit geht X, wenn die 100-Tage-Linear-Regression-Anzeige nachlässt Go long L, wenn der Kurs über 100 Tage hinausgeht Lineare Regression Beenden X, wenn die 100-Tage-Anzeige ausfällt Gehen Sie lange L, wenn die 300-tägige Linear-Regressionsanzeige nach dem oben gekreuzten Preis auftaucht Den 100-Tage-Indikator Exit X, wenn die 300-Tage-Linear Regression Indicator ausgeschaltet wird. Bearish Divergenz auf dem Indikator warnt vor einer großen Trendumkehr. Die Differenz aus Moving Average (Zeitreihe) - Funktion berechnet die Differenz zwischen einem Wert und seinem Zeitreihen-gleitenden Durchschnitt. Parameter ------------------ Daten Die zu analysierenden Daten. Dies ist typischerweise ein Feld in einer Datenreihe oder ein berechneter Wert. Period Die Anzahl der Balken, die in den Durchschnitt aufgenommen werden sollen, einschließlich des aktuellen Wertes. Zum Beispiel enthält eine Periode von 3 den aktuellen Wert und die beiden vorherigen Werte. Funktion Wert ------------------------ Der Zeitreihenbewegungsdurchschnitt wird durch Anpassen einer linearen Regressionsgerade über die Werte für den gegebenen Zeitraum berechnet und dann bestimmt Den aktuellen Wert für diese Zeile. Eine lineare Regressionsgerade ist eine Gerade, die so nahe wie möglich an allen gegebenen Werten liegt. Der Zeitreihen-Gleitender Durchschnitt am Anfang einer Datenreihe ist nicht definiert, bis es genug Werte gibt, um den vorgegebenen Zeitraum zu füllen. Es ist anzumerken, dass sich ein Zeitreihenbewegungsdurchschnitt stark von anderen Arten von Bewegungsdurchschnitten unterscheidet, da der aktuelle Wert dem jüngsten Trend der Daten folgt, nicht einem tatsächlichen Durchschnitt der Daten. Aus diesem Grund kann der Wert dieser Funktion größer oder kleiner sein als alle Werte, die verwendet werden, wenn der Trend der Daten im Allgemeinen zunimmt oder abnimmt. Der Unterschied zum gleitenden Mittelwert ist der gleitende Mittelwert, der von dem aktuellen Wert subtrahiert wird. Verwendung ----------- Verschiebungsdurchschnitte sind nützlich zum Glätten von verrauschten Rohdaten, wie z. B. Tagespreisen. Die Preisdaten können von Tag zu Tag stark variieren, wodurch der Preis nach oben oder nach unten verschoben wird. Mit Blick auf den gleitenden Durchschnitt des Preises, ein allgemeineres Bild der zugrunde liegenden Trends gesehen werden kann. Da bewegte Durchschnitte verwendet werden können, um Trends zu sehen, können sie auch verwendet werden, um zu sehen, ob Daten den Trend stecken. Dies macht den Unterschied aus dem gleitenden Durchschnitt nützlich für die Hervorhebung, wo die Daten brechen weg von der Tendenz.

No comments:

Post a Comment